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The direct implementation of derivative boundary conditions at edge points
was demonstrated to be simple, ¯exible and computationally e�cient in the
vibration analysis of beams and plates by using the di�erential quadrature
(DQ) method. In the approach, the discretized governing equations at certain
interior points need to be replaced by the discretized boundary conditions.
Naturally, one may have questions as to whether the replacement points can be
selected arbitrarily, and how to choose the optimal replacement points. This
paper tries to answer these questions, and its focus is to investigate
systematically the e�ect of the replacement location on the accuracy of the
numerical solution. From the error distribution analysis of derivative
approximation, it is found that the optimal position for the replacement is the
interior point just adjacent to the boundary. This conclusion is con®rmed by
the numerical experiments of free vibration analysis for beams and plates with
various boundary conditions.

# 1999 Academic Press

1. INTRODUCTION

Since the computation of weighting coef®cients was improved by Quan and
Chang [1], and generalized by Shu [2], Shu and Richards [3], the differential
quadrature (DQ) method has been increasingly applied in engineering. A good
review on the application of the DQ-type method in engineering was given by
Bert and Malik [4]. For the application of the DQ-type method in structural and
vibration analysis, pioneer work was done by Bert et al. [5]. The standard
governing equations in structural mechanics usually involve fourth order
derivatives. To ensure that the problem is well-posed, two boundary conditions
at each boundary should be speci®ed. Thus, the structural and vibration
problems are actually high order boundary value problems with multiple
boundary conditions. Numerically, some careful considerations are needed to
implement properly the multiple boundary conditions at each edge.

Journal of Sound and Vibration (1999) 222(2), 239±257
Article No. jsvi.1998.2041, available online at http://www.idealibrary.com on



240 C. SHU AND W. CHEN

For the application of the DQ-type method in structural mechanics, there are
various approaches to implement the multiple boundary conditions. One is the
so-called d-technique proposed by Bert et al. [5] and Jang et al. [6], in which two
grid points, separated from each other by a small distance d, are placed near
each boundary edge. Then, the two boundary conditions at each boundary are

applied at the boundary point itself and its adjacent d-point. Usually, the
derivative condition is applied at the d-point. To obtain an accurate numerical
result, the d-value should be very small (d� 10ÿ5 in dimensionless value [4±7]). If
the value of d is small enough, the approach produces good results in some
situations such as the clamped condition. However, the approach failed to work
well in the other situations such as free edges. In addition, arbitrariness in the
choice of the d value may introduce unexpected oscillation behavior of the

solutions. To overcome the above dif®culties in the d approach, Wang and Bert
[8] presented an approach which ®rstly incorporates the boundary conditions
into the DQ weighting coef®cient matrices, and the modi®ed weighting
coef®cients are then used to discretize the governing equations. The technique
resulted in an obvious improvement in the DQ solution of beams and plates with
free and simply-supported boundary conditions [8]. However, the technique is

not applicable to problems with cross derivative and free corner conditions. The
modi®cation of the weighting coef®cient matrices also causes some loss of
¯exibility and incurs greater additional computational efforts due to some matrix
products, which require O(N4) scalar operations.
An intuitive methodology is to implement directly the double boundary

conditions exactly at edge points [4, 9±11]. Recently, Shu and Du [12, 13] have

given a systematic use of the methodology in the solution of vibration problems
of beams and plates with various boundary conditions, including the ®rst
application in plates with free corners. The work shows that this approach is
uniformly successful for all known boundary conditions and seems to have no
limitation for its use so far. The accuracy, ef®ciency and stability of the
approach are consistently superior to the traditional d-technique in all cases

examined. Wang and Bert's approach [8] worked slightly better than Shu and
Du's approach in very limited situations [11]. However, the applicability of
Wang and Bert's approach is subject to grave limitations in engineering
problems due to its incapability in handling cross derivative boundary
conditions. It seems that Shu and Du's approach has a potential to be further
developed into an ef®cient and ¯exible numerical technique for solving high
order boundary value problems in practical engineering. When the derivative

condition is discretized by the DQ-type method, the resultant algebraic equation
involves the boundary points as well as the interior points. The idea of Shu and
Du's approach is to replace the discretized governing equation by the discretized
boundary condition equation for some interior points. In the work of Shu and
Du [12, 13], the interior point is chosen as the immediate neighboring point to
the boundary. Here, one may raise the question as to whether this choice is

optimal in terms of the accuracy and ef®ciency of the approach. This is the
purpose of the present study.
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Based on truncation error analysis for derivative approximation, this paper
will provide a systematic investigation on the choice of interior points in which
the discretized governing equation is replaced by the discretized boundary
condition equation. The truncation error formulas newly developed by Chen [11]
will be used to study the error distribution for the ®rst, second, third, and fourth
order derivatives. Since in Shu and Du's approach, the discretized governing
equation is replaced by the discretized boundary condition equation at a selected
interior point, it can be expected that the optimal position could be the one at
which the truncation error of discretized governing equation reaches maximum.
When an equation with maximum truncation error is replaced by another
equation with less truncation error, the overall truncation error of the equation
system will be reduced. Thus, the accuracy of numerical solution can be
improved. The guidance of error distribution analysis for selecting the optimal
replacement points will be validated by vibration analysis of beams and plates.
Through the error distribution analysis and many numerical experiments by
changing the replacement point, it was found that the optimal position is the
interior point immediately neighboring to the boundary.

2. GENERALIZED DIFFERENTIAL QUADRATURE (GDQ)

The GDQ method will be used to discretize the derivatives in the governing
equation and the boundary conditions. The GDQ approach was developed by
Shu et al. [2, 3] to improve the DQ technique [14] for the computation of
weighting coef®cients. The nth order derivative of a function f(x, t) with respect
to x at a grid point xi , can be approximated by the DQ approach as

f �n�x �xi, t� �
XN
k�1

c
�n�
ik
� f�xk, t�, n � 1, 2, . . . ,Nÿ 1, for i � 1, 2, . . . ,N, �1�

where N is the number of grid points in the whole domain. c
�n�
ik are the weighting

coef®cients to be determined by the GDQ method as:

weighting coef®cients for the ®rst order derivative

c
�1�
ij �

A�1��xi�
�xi ÿ xj� �A�1��xj� ; i, j � 1, 2, . . . ,N but j 6� i �2�

c
�1�
ii � ÿ

XN
j�1, j6�i

c
�1�
ij , i � 1, 2, . . . ,N, �3�

where

A�1��xi� �
XN

k�1, k6�i
�xi ÿ xk�;
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weighting coef®cients for the second and higher order derivatives

c
�n�
ij � n � c

�nÿ1�
ii
� c�1�ij ÿ

c
�nÿ1�
ij

xi ÿ xj

 !
for i, j � 1, 2, . . . ,N,

but j 6� i, n � 2, 3, . . . ,Nÿ 1, �4�

c
�n�
ii � ÿ

XN
j�1, j6�i

c
�n�
ij , for i � 1, 2, . . . ,N, n � 2, 3, . . . ,Nÿ 1: �5�

It is obvious from the above equations that the weighting coef®cients of the
second and higher order derivatives can be completely determined from those of
the ®rst order derivative.

3. TRUNCATION ERROR OF DERIVATIVE APPROXIMATION

Recently, Chen [11] has presented a number of new formulas for the analysis
of truncation error distribution of derivatives in the DQ approximation. These
formulas are based on the polynomial interpolation approach and the
formulation of weighting coef®cients given by Shu and Richards [3]. The
formulas are different from those given by Bellman et al. [14] in that they can
estimate the truncation error at every mesh point and expose the de®nite
convergence speed more accurately.

If function f (x) is smooth enough, it can be approximated by a Lagrangian
polynomial,

f�x� � ÿ
XN
j�1

pj�x�fj�x��pj�x�f�xj�� � R�x�, j � 1, 2, . . . ,N, �6�

where pj (x) is the Lagrangian interpolated polynomial, R(x) is the truncation
error, given by

R�x� � f �N��x�W�x�
N!

, �7�

where

W�x� �
YN
i�1
�xÿ xi�:

Differentiating equation (6) with respect to x and then applying at each mesh
point gives

f �1��xi� �
XN
j�1

p
�1�
j �xi� f �xj� � R�1��xi� �

XN
j�1

c
�1�
ij f �xj� � R�1��xi�, �8�
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where c
�1�
ij are the GDQ weighting coef®cients of the ®rst order derivative, xi is

the co-ordinate of grid points. R(1)(xi) is the truncation error of the ®rst order

derivative approximation by GDQ approach. Thus, one has

R�1��xi� � f �n��x�W�1��xi�
N!

, i � 1, 2, . . . ,N: �9�

Let K1�max{| f (N)(x)|}, one has

jR�1��xi�jEK1
jW �1��xi�j

N!
� K1e

�1��xi�, i � 1, 2, . . . ,N: �10�

In fact,

jW �1��xi�j �
YN
k 6�i
�xi ÿ xk�

�����
����� � p�xi�: �11�

Therefore, one obtains

e�1��xi� � p�xi�
N!

: �12�

For the second order derivative, one has

R�2��xi� � 2xx f �N�1��x�W �1��xi�
N!

� f �N��x�W �2��xi�
N!

, i � 1, 2, . . . ,N: �13�

Following the formulation of weighting coef®cients given by Shu [3], one has

c
�mÿ1�
ii � W�m��xi�

mW�1��xi� : �14�

where c
�mÿ1�
ii are the diagonal entries of the DQ weighting coef®cient matrix for

the (mÿ 1)th order derivative. W(m) denotes the mth order derivative of function

W(x). Therefore

W�m��xi� � mc
�mÿ1�
ii W�1��xi�: �15�

Substituting formula (15) into equaion (13), one has

jR�2��xi�jE2K2�1� jc�1�ii j�
p�xi�
N!
� K2e

�2��xi�, �16�

where K2�max{| f (N)(x)|, |xx f (N�1)(x)|)}, and

e�2��xi� � 2�1� jc�1�ii j�
p�xi�
N!

:

Similarly, one can obtain

jR�3��xi�jE3K3�2� 2jc�1�ii j � jc�2�ii j�
p�xi�
N!
� K3e

�3��xi� �17�
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jR�4��xi�jE4K4�5� 6jc�1�ii j � 3jc�2�ii j � jc�3�ii j�
p�xi�
N!
� K4e

�4��xi� �18�

for the third and fourth order derivatives, respectively, where K3 and K4 are the
maximum values of composite derivatives of x and f (x) up to the (N� 3) order,
and

e�3��xi� � 3�2� 2jc�1�ii j � jc�2�ii j
p�xi�
N!

,

e�4��xi� � 4�5� 6jc�1�ii j � 3jc�2�ii j � jc�3�ii j
p�xi�
N!

:

.

4. GOVERNING EQUATIONS AND NUMERICAL IMPLEMENTATION

The governing equations of transverse vibration of beams and plates and their
numerical implementation by the GDQ approach will be shown in this section.
In the present study, all independent variables are normalized to the interval
[0, 1]. For beams, N is the number of grid points, and Aij , Bij , Cij and Dij

represent the GDQ weighting coef®cients of the ®rst, second, third and fourth
order derivatives. For plates, N and M are the number of grid points in the x
and y directions, and Aij , Bij , Cij and Dij with superscript x and y denote the
weighting coef®cient matrices of the ®rst, second, third and fourth order
derivatives along the x and y directions. For simplicity, the simply-supported,
clamped and free edge conditions are denoted by SS, C and F respectively.

4.1. TRANSVERSE VIBRATION OF BEAMS

The non-dimensional governing equation for the free vibration of a uniform
beam is given by

d4w

dx4
� �o2w, �19�

where �o2� rA0L
4o2/EI is the dimensionless frequency, o is the natural

frequency of free vibration. A0 , L and r are the constant cross-sectional area,
the length of the beam, and the density, respectively, E is the elastic modulus
and I is the constant area moment of inertia about the neutral axis. Since
equation (19) is the fourth order, two boundary conditions are needed at each
end. In the present work, three types of boundary conditions are considered:

Simply supported end (SS):

W � 0 and
@2W

@x2
� 0 at x � 0, 1: �20�

Clamped end (C):
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W � 0 and
@W

@x
� 0 at x � 0, 1: �21�

Free end (F):

@2W

@x2
� 0 and

@3W

@x3
� 0 at x � 0; 1: �22�

Using then the GDQ method, equation (19) can be discretized asXN
j�1

Dijwj � �o2wi: �23�

It is noted that equation (23) should be applied at interior points. Similarly, the
derivatives in equations (20)±(22) can also be discretized by the GDQ method.
The discretized form of equation (20) can be written as

w1 � 0,
XN
k�1

B1, k �wk � 0, atx � 0, �24a�

wN � 0,
XN
k�1

BN, k �wk � 0, atx � 1, �24b�

and the discretized form of equation (2l) is

w1 � 0,
XN
k�1

A1, k �wk � 0, at x � 0, �25a�

wN � 0,
XN
k�1

AN, k �wk � 0, at x � 1: �25b�

In a similar way, equation (22) is discretized asXN
k�1

B1, k �wk � 0,
XN
k�1

C1, k �wk � 0 x � 0 �26a�

XN
k�1

BN, k �wk � 0,
XN
k�1

CN, k �wk � 0 x � 1 �26b�

It should be indicated that all the boundary conditions are discretized exactly
on the boundary. The detailed description of implementing boundary conditions
can be found in reference [12]. It can be seen from equations (24)±(26) that at
each end, there are two boundary conditions. So, for two ends, there are four
boundary conditions. To close the system, equation (23) can only be applied at
(Nÿ4) interior points since the number of unknowns (function values) is just N.
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In other words, at two interior points, equation (23) should be replaced by the
boundary condition equation which is usually given from the derivative
condition. This is possible since the discretized derivative condition involves the
functional values at the boundary points as well as the interior points.
Mathematically, the discretized derivative condition can be considered as the
governing equation for any point involved in the equation. In the work of Shu
and Du [12], the derivative condition equations were taken as the equations for
two interior points which are immediately adjacent to the left and right
boundaries. An interesting question is whether this choice is optimal and what is
the effect on accuracy when the derivative condition equations are applied at
other interior points. To investigate these problems, this study considers the
discretized derivative condition at the left boundary as the equation for an
interior point i�DL, and the discretized derivative condition at the right
boundary as the equation for an interior point i�DR. DL and DR are
changeable, 2EDLEN/2, N/2EDRENÿ 1. When DL� 2 and DR�Nÿ 1,
the present approach is the same as the one used by Shu and Du [l2].
Accordingly, equation (23) should be applied at the interior points, i� 2, . . . ,
DLÿ 1, DL� 1, . . . , DRÿ 1, DR� 1, . . . , Nÿ1.

4.2. TRANSVERSE VIBRATION OF THIN, ISOTROPIC PLATES

The equation governing free vibration of rectangular plates can be expressed
as

wxxxx � 2l2wxxyy � l4wyyyy � �o2w, �27�
where l� a/b denotes the aspect ratio, �o2� rha4o2/D, D is the plate stiffness, h
is the total plate thickness, r is the density, w is the modal de¯ection, and o is
the natural frequency of free vibration. Application of the GDQ method to
equation (27) givesXN

k�1
Dx

ikwkj � �2l2�
XN
m�1

Bx
im

XM
k�1

Bx
jkwmk � �l4�

XM
k�1

D
y
jkwik � �o2wij: �28�

Equation (28) should be applied at the interior points. In this study, three types
of boundary conditions are considered:

Clamped edge:

w � 0, wx � 0 at x � 0, 1, �29a�

w � 0, wy � 0 at y � 0, 1: �29b�
The discretized form of equation (29) can be written as

w1, j � 0,
XN
k�1

Ax
1kwk, j � 0; j � 1, 2, . . . ,M, at x � 0, �30a�
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wN, j � 0,
XN
k�1

Ax
Nkwk, j � 0; j � 1, 2, . . . ,M, at x � 1, �30b�

wi, 1 � 0,
XM
k�1

A
y
1kwi, k � 0; i � 1, 2, . . . ,N, at y � 0, �30c�

wi,M � 0,
XM
k�1

A
y
Mkwi, k � 0; i � 1, 2, . . . ,N, at y � 1: �30d�

Simply supported edge:

w � 0, wxx � 0 at x � 0, 1, �31a�

w � 0, wyy � 0 at y � 0, 1: �31b�
The discretized form of equation (31) is

w1, j � 0,
XN
k�1

Bx
1kwk, j � 0; j � 1, 2, . . . ,M, at x � 0, �32a�

wN, j � 0,
XN
k�1

Bx
Nkwk, j � 0; j � 1, 2, . . . ,M, at x � 1, �32b�

wi, 1 � 0,
XM
k�1

B
y
1kwi, k � 0; i � 1, 2, . . . ,N, at y � 0, �32c�

wi,M � 0,
XM
k�1

By
Mkwi, k � 0; i � 1, 2, . . . ,N, at y � 1: �32d�

Free edge:

wxx � �l2wyy � 0, wxxx � �2ÿ ��l2wxyy � 0 at x � 0, 1, �33a�

l2wyy � �wxx � 0, l2wyyy � �2ÿ ��wxxy � 0 at x � 0, 1, �33b�

wxy � 0 at corner of two adjacent free edges. �33c�
Using the GDQ method, equation (33) can be discretized asXN

k�1
Bx
1, kwk, j � ��l2�

XM
k�1

B
y
j, kw1, k � 0, �34a�
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XN
k�1

Cx
1, kwk, j � �2ÿ ��l2

XN
m�1

Ax
1;m

XM
k�1

B
y
j, kwm, k � 0, �34b�

for the edge of x� 0, XN
k�1

Bx
N, kwk, j � ��l2�

XM
k�1

By
j, kwN, k � 0, �34c�

XN
k�1

Cx
N, kwk, j � �2ÿ ��l2

XN
m�1

Ax
N,m

XM
k�1

B
y
j, kwm, k � 0, �34d�

for the edge of x� 1,

l2
XM
k�1

Bx
1, kwi, k � ���

XN
k�1

Bx
i, kwk, 1 � 0, �34e�

l2
XM
k�1

C
y
1, kwi, k � �2ÿ ��

XN
m�1

Bx
i, k

XM
k�1

A
y
1, kwm, k � 0, �34f �

for the edge of y� 0,

l2
XM
k�1

B
y
M, kwi, k � �

XN
k�1

Bx
i, kwk,M � 0, �34g�

l2
XM
k�1

Cy
M, kwi, k � �2ÿ ��

XN
m�1

Bx
i,m

XM
k�1

Ay
M, kwm, k � 0, �34h�

for the edge of y� 1. At four corner points, equation (33c) can be applied. For
example, at the corner of x� 1, y� 1, the discretized equation isXN

k1�1
Ax

N, k1

XM
k2�1

Ay
M, k2wk1, k2 � 0: �35�

From equations (30), (32) and (34), it can be seen that for all types of plate
edge conditions, there are two discretized boundary conditions at each edge.
Among them, one can be applied at the boundary point itself, and the other
should be applied at an interior point. In the work of Shu and Du [12, 13], the
interior point is chosen as the neighboring point to the boundary. In this study,
the discretized derivative condition equations at y� 0 and y� 1 are still applied
at the neighboring points to the boundary along the line of j� 2 and j�Mÿ 1,
respectively. Along the x direction, the discretized derivative condition at x� 0 is
applied at interior points along the line of i�DL, and the discretized derivative
condition at x� 1 is applied at interior points along the line of i�DR. Again,
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DL and DR are changeable, 2EDLEN/2, N/2EDRENÿ 1. The method of
implementing the boundary conditions in references [12, 13] is also used in this
study. Since the discretized boundary condition equations are applied at some
interior points, equation (28) should be applied at the interior points,
i� 2, . . . , DLÿ 1, DL� 1, . . . , DRÿ 1, DR� 1, . . . , Nÿ 1, j� 3, . . . , Mÿ 2. To
obtain the frequencies of free vibration for beams and plates, the same approach
is adopted as shown in references [12, 13]. In this study, the effect of DL and DR
on the accuracy of the numerical solution will be investigated. It is expected
from the study that an optimal value of DL and DR can be found.

5. RESULTS AND DISCUSSION

In the present study, the shifted Chebyshev±Gauss±Lobatto points are
adopted as the basic mesh points as shown below:

xi �
1

2
1ÿ cos

iÿ 1

Nÿ 1
p

� �� �
, i � 1, 2, . . . ,N, �36a�

Zj �
1

2
1ÿ cos

jÿ 1

Nÿ 1
p

� �� �
, j � 1, 2, . . . ,N: �36b�

To obtain more accurate results of SS±SS, F±SS and F±F beams and their
combinations for plates, the grid points yielded by formula (36) need to be
further stretched towards the boundary [13]. The following stretch formulation
[2] is used,

xi � �1ÿ a��3x2i ÿ 2x3i � � axi , i � 1, 2, . . . ,N, �37a�

yj � �1ÿ b��3Z2j ÿ 2Z3j � � bZj , j � 1, 2, . . . ,N, �37b�
where a and b are stretching parameters along the x and y directions. The
smaller the values of a and b, the closer the mesh points to the boundary. In this
study, values are chosen of a� b� 0�8 for C±C, a� b� 0�6 for C±SS,
a� b� 0�4 for SS±SS, and a� b� 0 for F±F boundary conditions, respectively.
The detailed study on the stretching of mesh points will be provided in a
separate paper. It should be indicated that when a one-dimensional problem
such as a beam is considered, only equation (37a) is used.

5.1. ERROR DISTRIBUTION OF DERIVATIVE APPROXIMATION

The truncation error distributions of the ®rst, second, third, and fourth order
derivatives for a one-dimensional problem namely, e(1)(xi), e

(2)(xi), e
(3)(xi), e

(4)(xi),
are studied for different types of grids. e(1)(xi), e

(2)(xi), e
(3)(xi), e

(4)(xi) are de®ned
in the previous section. Table 1 shows the truncation error distributions for
N� 9, a� 1. For this case, the grid is actually the Chebyshev±Gauss±Lobatto
grid. It can be seen clearly from Table 1 that all the error distributions are
symmetric under the present symmetric mesh point distribution. It was found
that the error of the ®rst order derivative approximation is lowest among four
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respective derivatives. As the order of derivative is increased, the error of
approximation is greatly increased. As one knows, the order of derivatives
involved in the boundary conditions is at least one order lower than the order of
derivatives involved in the governing equation. For example, the clamped
condition only involves the ®rst order derivatives, the simply-supported
condition involves the second order derivatives, while the free condition involves
both the second and third order derivatives, but the governing equation involves
the fourth order derivatives. From the information shown in Table 1, it can be
concluded that the numerical error for the boundary condition approximation is
less than that for the governing equation approximation. In other words, the
boundary condition approximation is more accurate than the governing
equation approximation. The information also gives us a hint that the numerical
errors of highest order derivative approximation in the differential equation have
a dominant effect on the accuracy of numerical solution since the numerical
error of high order derivative approximation is much larger than that of low
order derivative approximation. Another important observation from Table 1 is
that except for the ®rst order derivative, the numerical errors at mesh points
near the boundary for other derivatives are much larger than those at mesh
points near the center of the domain.
On the other hand, it should be noted that the numerical error of a discretized

equation system is a major cause for lower accuracy of the numerical solution.
Obviously, the fewer the numerical errors of the equation system, the more
accurate the numerical solution. If for some case, the discretized governing
equations are required to be replaced by other more accurate equations at some
points, these points should be chosen in such a way that the numerical errors of
discretized governing equations are largest at selected points. In so doing, the
total numerical error of the equation system is reduced when the discretized
governing equations with larger numerical errors are replaced by other equations
with fewer numerical errors. As a consequence, the accuracy of the numerical
solution is improved.
Now, consider the vibration analysis of beams and plates. The governing

equation of the problem involves the second and the fourth order derivatives. It
is known from the above analysis that the numerical error of the fourth order
derivative approximation is the major numerical error in the discretized
governing equation, and numerical errors of the discretized governing equation
at points near the boundary are much larger than those at points near the center.

TABLE 1

Error distributions of the 1st, 2nd, 3rd and 4th order derivative approximations for the
Chebyshev±Gauss±Lobatto Grid (N� 9, a� 1�0)

xi x1 x2 x3 x4 x5 x6 x7 x8 x9

e(1)(xi) 1�3E-9 6�7E-10 6�7E-10 6�7E-10 6�7E-10 6�7E-10 6�7E-10 6�7E-10 1�3E-9
e(2)(xi) 1�2E-7 9�8E-9 3�2E-9 1�9E-9 1�3E-9 1�9E-9 3�2E-9 9�8E-9 1�2E-7
e(3)(xi) 4�8E-6 1�6E-6 3�8E-7 2�2E-7 1�8E-7 2�2E-7 3�8E-7 1�6E-6 4�8E-6
e(4)(xi) 1�2E-4 5�9E-5 3�9E-6 1�3E-6 7�2E-7 1�3E-6 3�9E-6 5�9E-5 1.2E-4
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It is also noticed that the numerical error of the discretized boundary condition
equation is smaller than that of the discretized governing equation. For our
approach to implement the boundary condition, the discretized derivative
condition should be used as the discretized equation for some interior points. In
other words, at selected interior points, the discretized governing equation
should be replaced by the discretized boundary condition equation. From the
above analysis, the optimal location of this replacement should be the position
where the numerical error of discretized governing equation is largest. From the
information in Table 1, it is found that the optimal location of replacement is
the interior point just next to the boundary. In other words, the optimal choice
of DL and DR is DL� 2 and D�Nÿ 1.
The error distributions of respective derivatives for different grids have also

been studied by changing the parameter a in equation (37a). It was found that as
a is decreased from 1 to 0, the numerical error of derivatives at points near the
boundary is decreased while the numerical error at points near the center of the
domain is increased. This can be observed from Table 2 where N� 9, a� 0. The
error distribution for this case seems to be ¯atter than the original Chebyshev±
Gauss±Lobatto grid. It can be seen from Table 2 that the numerical error of
higher order derivative approximation is still bigger than that of lower order
derivative approximation, and the numerical error of the fourth order derivative
approximation at points near the boundary is larger than that at points near the
center of the domain. Therefore, the conclusion that DL� 2 and DR�Nÿ 1 are
the optimal choice remains the same. In our approach, the boundary condition is
exactly discretized at the boundary. Since the derivative approximation at points
near the boundary is greatly improved when the grid is stretched (reducing a), it
is believed that the numerical error of discretized boundary condition equation
can be reduced when a is decreased. As a result, the accuracy of numerical
results can be improved.

5.2. EFFECT OF SELECTING POINT ON ACCURACY OF NUMERICAL SOLUTION

In this section the effect of changing the replacement point on the accuracy of
the numerical solution will be investigated, and the conclusion drawn in the
above error distribution analysis validated. The free vibrations of beams and
plates are studied. To show the effect of replacement point on the accuracy of
the DQ solution, the relative deviation between the present DQ solution and the

TABLE 2

Error distributions of the 1st, 2nd, 3rd and 4th order derivative approximations for grid
with N� 9, a� 0�0

xi x1 x2 x3 x4 x5 x6 x7 x8 x9

e(1)(xi) 5�6E-11 4�9E-11 3�6E-10 1�5E-9 2�5E-9 1�5E-9 3�6E-10 4�9E-11 5�6E-11
e(2)(xi) 3�0E-8 2�1E-8 1�7E-8 1�9E-8 4�9E-9 1�9E-8 1�7E-8 2�1E-8 3�0E-8
e(3)(xi) 2�4E-6 2�0E-6 2�2E-7 3�6E-7 4�1E-7 3�6E-7 2�2E-7 2�0E-6 2�4E-6
e(4)(xi) 8�3E-5 7�6E-5 1�9E-5 5�9E-6 1�6E-6 5�9E-6 1�9E-5 7�6E-5 8�3E-5
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reference results given by other researchers is de®ned as follows,

ek � Reference dataÿDQ solution

Reference data

���� ����, �38�

where ek is the relative deviation of the frequency for the kth mode. It is

indicated that the ``Reference data'' are the results of Blevin [15] for beams, and

the results of Leissa and Narita [l7] for the F-F-F-F plate, and the results of

Leissa [l6] for other plate con®gurations. The results of Leissa [16] are the

analytic solutions for plates with a pair of opposite SS boundary conditions. The

average error is de®ned as

e � 1

n

Xn
k�1

ek, �39�

The free vibrations of SS-SS, C-C, SS-C, F-F beams and SS-SS-SS-SS, C-SS-C-

SS and F-F-F-F square plates are chosen as test examples in this study. Table 3

displays the relative deviations of the fundamental frequencies of SS-SS, C-C,

SS-C and F-F beams with respect to the change of DL and DR values. The total

number of mesh points used is N� 9. It is observed from Table 3 that the errors

increase evidently as the value of DL increases and the value of DR decreases in

all cases. This shows that the closer the replacement points to the center, the

TABLE 3

Relative deviations of fundamental frequencies of various beams (N� 9)

DL DR SS-SS C-SS C-C F-F

2 8 2�0E-5 1�5E-5 7�4E-5 7�6E-4
3 7 7�8E-3 9�6E-3 3�4E-3 5�9E-2
4 6 1�1E-1 9�8E-2 1�0E-1 3�8E-1
2 7 4�3E-3 6�2E-4 1�9E-3 1�2E-2
3 8 4�3E-3 9�4E-3 1�9E-3 3�0E-2
4 8 6�5E-2 7�8E-2 6�5E-2 2�3E-1

TABLE 4

Relative deviations of the ®rst ®ve frequencies of the C-C beam (N� 15, a� 0�8)
DL DR e1 e2 e3 e4 e5 e

2 14 6�3E-7 5�2E-8 4�1E-6 1�7E-4 2�1E-4 7�7E-5
3 13 1�7E-5 1�2E-4 3�6E-4 2�2E-3 1�0E-2 2�3E-3
4 12 9�9E-4 6�4E-3 1�7E-2 3�1E-2 2�8E-2 1�7E-2
5 11 1�1E-2 4�5E-2 6�3E-2 4�0E-2 4�7E-3 3�3E-2
6 10 4�4E-2 6�6E-2 5�0E-2 2�1E-1 3�7E-2 8�2E-2
7 9 8�5E-2 1�4E-1 1�5E-1 1�9E-1 2�0E-1 1�5E-1
2 13 9�0E-6 5�7E-5 1�9E-4 9�7E-4 5�1E-3 1�3E-3
2 11 5�8E-3 2�3E-2 3�3E-2 2�0E-2 2�7E-3 1�7E-2
3 11 5�8E-3 2�3E-2 3�3E-2 2�1E-2 2�9E-3 1�7E-2
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lower the accuracy of the numerical solution. Clearly, DL� 2 and DR� 8

(Nÿ 1) are the optimal choice. It was found that the solution of DL� 3 and

DR� 8 is superior to that of DL� 3 and DR� 7 in various beams examined.

This seems to show that whether the replaced points are symmetric or not has

little effect on the accuracy of the numerical solution.

Tables 4±6 list the relative deviations of the ®rst ®ve frequencies for C-C, SS-

SS and F-F beams, in which 15 mesh points are used. The solutions of DL� 2

and DR�Nÿ 1� l4 are obviously the most accurate among all results of each

case. The worst solutions in all cases were found when DL� 7 and DR� 9. The

general tendency is that the accuracy decreases as the replacement positions

move toward the center of variable domain. However, there is an exceptional

case, in which the accuracy of the ®fth frequency of the C-C beam for DL� 5

and DR� 11 is higher than that for DL� 4 and DR� 12. In addition, it is

observed that the solutions of lower frequencies are usually more accurate than

those of higher frequencies. As is shown in Table 6, the accuracy of the F-F

beam is more sensitive to the change of replacement points. For this case, the

solutions have no practical signi®cance when DL is increased from 4 to 7 while

DR is decreased from 12 to 9.

TABLE 5

Relative deviations of the ®rst ®ve frequencies of the SS-SS beam (N� 15, a� 0�4)
DL DR e1 e2 e3 e4 e5 e

2 14 4�0E-8 1�0E-7 2�0E-6 2�3E-4 1�4E-3 3�4E-4
3 13 1�3E-4 5�1E-4 1�1E-3 1�9E-3 6�0E-3 1�9E-3
4 12 2�5E-3 9�9E-3 1�9E-2 3�0E-2 3�4E-2 1�9E-2
5 11 1�4E-2 4�2E-2 4�6E-2 1�2E-2 3�4E-2 3�0E-2
6 10 4�4E-2 5�0E-2 7�6E-2 2�3E-1 2�2E-3 8�4E-2
7 9 7�2E-2 1�9E-1 1�4E-1 9�2E-3 3�0E-1 1�6E-1
2 13 6�2E-5 2�5E-4 5�6E-4 8�4E-4 3�8E-3 1�1E-3
2 11 7�3E-3 2�1E-2 2�3E-2 7�3E-3 1�7E-2 1�5E-2
3 11 7�2E-3 2�1E-2 2�4E-2 8�4E-3 1�4E-2 1�5E-2

TABLE 6

Relative deviations of the ®rst ®ve frequencies of the F-F beam (N� 15, a� 0�0)
DL DR e1 e2 e3 e4 e5 e

2 14 6�5E-7 3�1E-6 8�3E-5 5�6E-3 1�0E-2 3�1E-3
3 13 1�3E-3 2�2E-3 3�2E-3 1�1E-2 6�3E-3 4�8E-3
4 12 3�8E-2 6�4E-2 7�0E-2 7�5E-2 1�2E-1 7�4E-2
5 11 8�4E-3 1�1E-1 1�1E-1 3�6E-2 3�1E-1 1�3E-1
6 10 2�3E-1 1�3E-1 2�2E-1 1�9E-1 2�4E-1 2�0E-1
7 9 3�8E-1 2�1E-1 3�8E-1 4�0E-1 6�0E-1 3�9E-1
2 13 6�6E-4 1�1E-3 1�6E-3 8�3E-3 8�1E-3 9�4E-3
2 11 4�0E-2 5�2E-2 4�5E-2 3�7E-1 5�7E-1 2�2E-1
3 11 4�0E-2 5�3E-2 2�4E-2 3�8E-1 5�7E-1 2�1E-1
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TABLE 7

Relative deviations of the ®rst ®ve frequencies of the C-SS-C-SS plate (N� 15, a� 0�8,
b� 0�4)

DL DR e1 e2 e3 e4 e5 e

2 14 5�2E-6 1�1E-6 2�4E-7 3�0E-6 8�9E-7 2�1E-6
3 13 1�0E-4 1�5E-4 2�6E-5 2�0E-4 1�8E-4 1�3E-4
4 12 5�3E-3 8�0E-3 4�4E-3 1�2E-2 8�0E-3 7�6E-3
5 11 3�7E-3 1�5E-3 3�8E-2 3�0E-2 4�8E-5 1�5E-2
6 10 2�6E-2 1�5E-2 5�8E-2 3�9E-2 1�9E-2 3�2E-2
7 9 3�0E-2 2�8E-3 1�7E-1 6�7E-2 1�4E-1 8�3E-2
2 13 1�0E-4 1�1E-4 3�7E-5 1�5E-4 9�7E-5 9�9E-5
2 11 4�6E-3 5�4E-3 2�1E-2 2�1E-2 5�5E-3 1�2E-2
3 11 4�6E-3 5�4E-3 2�2E-2 2�1E-2 5�5E-3 1�2E-2

TABLE 8

Relative deviations of the ®rst ®ve frequencies of the SS-SS-SS-SS plate (N� 15,
a� b� 0�4)

DL DR e1 e2 e3 e4 e5 e

2 14 2�7E-5 4�4E-7 6�6E-7 4�4E-7 1�2E-6 5�8E-6
3 13 5�9E-3 2�9E-4 7�1E-3 5�1E-3 6�4E-4 3�8E-3
4 12 2�4E-2 4�5E-3 2�0E-2 6�5E-3 1�3E-2 1�4E-2
5 11 3�1E-2 2�7E-2 3�3E-2 3�3E-3 3�8E-2 2�7E-2
6 10 6�2E-2 4�1E-2 1�2E-1 6�6E-2 3�5E-2 6�4E-2
7 9 1�2E-1 2�3E-2 4�2E-1 2�2E-1 1�4E-1 1�8E-1
2 13 5�4E-3 1�6E-4 6�6E-3 4�7E-3 3�3E-4 3�4E-3
2 11 2�3E-2 1�5E-2 2�1E-2 1�6E-3 1�9E-2 1�6E-2
3 11 2�3E-2 1�5E-2 2�2E-2 2�3E-3 1�9E-2 1�6E-2

TABLE 9

Relative deviations of the ®rst ®ve frequencies of the F-F-F-F plate (N� 15, a� b� 0�0,
�� 0�3)

DL DR e1 e2 e3 e4 e5 e

2 14 7�4E-5 4�5E-5 5�3E-4 4�6E-4 4�6E-4 3�1E-4
3 13 1�2E-1 1�4E-3 2�8E-1 1�8E-1 3�7E-1 1�9E-1
4 12 3�0E-1 5�8E-2 2�8E-1 4�2E-1 4�2E-1 3�0E-1
5 11 2�7E-1 5�2E-1 2�3E-1 2�1E-1 3�8E-1 3�2E-1
6 10 1�1E�0 4�4E-1 1�1E�0 4�3E-1 5�5E-1 7�1E-1
7 9 1.2E�0 5�3E-1 2�7E-1 2�0E-1 2�0E-1 4�9E-1
2 13 5�5E-3 4�9E-3 2�8E-1 1�0E-1 3�8E-1 1�8E-1
2 11 5�0E-1 7�5E-2 1�2E-1 3�9E-1 1�4E-1 2�5E-1
3 11 7�0E-1 2�8E-1 1�3E-1 3�9E-1 3�9E-1 3�1E-1
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Tables 7±9 compare the relative errors of the ®rst ®ve frequencies of C-SS-C-
SS, SS-SS-SS-SS and F-F-F-F plates under various values of DL and DR. The
mesh size used is 156 15. In general, the least accurate DQ solutions of all these
cases were found when DL� 7 and DR� 9. The accuracy of numerical results
for DL� 2 and DR�Nÿ 1� 14 is obviously higher than other cases. This again
con®rms that the optimal replacement position should be the point just next to
the boundary. In general, the movement of replacement points towards the
center of the domain will decrease the accuracy of the numerical solution. One
can also ®nd that the solutions are not sensitive to whether the replacement
point are placed in a symmetric or asymmetric manner. In some cases, for
example, the C-SS-C-SS plate as shown in Table 7, the solutions of higher
frequencies have better accuracy than lower frequencies when DL� 2 and
DR� l4. As can be seen from Tables 7±9, the average relative errors of the ®rst
®ve frequencies under DL� 2 and DR� 14 are very low in the present DQ
computation. As discussed in the error distribution analysis, the stretching of
mesh points towards the boundary can reduce the error of derivative
approximation at points near the boundary. Therefore, the boundary condition
can be discretized more accurately. As a consequence, the accuracy of numerical
results can be improved. This is particularly true for the F-F-F-F plate
con®guration. As shown by Shu and Du [13], for the F-F-F-F plate, the a value
should be reduced to 0 in order to obtain accurate numerical solutions. It can be
seen from Table 9 that even for this case, the optimal replacement points are still
at DL� 2 and DR�Nÿ 1� 14.

6. CONCLUSIONS

In the early work of implementing the boundary conditions in the free
vibration analysis of beams and plates, the discretized governing equation at
some interior points need to be replaced by the discretized boundary condition
equation. This paper discusses the selection of optimal replacement points from
the error distribution analysis of derivative approximation. From the error
distribution analysis, it was found that the optimal replacement positions are the
interior points immediately adjacent to the boundary. This conclusion has been
con®rmed by numerical experiments for free vibration analysis of beams and
plates with clamped, simply-supported and free boundary conditions. The
conclusion may provide a practical guidance in applying the DQ method to
general high order boundary value problems.
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APPENDIX: NOMENCLATURE

c
�N�
ij GDQ weighting coef®cients of the Nth order derivative
pi(x) Lagrangian interpolated polynomial
R(N)(xi) truncation error of GDQ approximation of the Nth order

derivative at xi discrete point
e(N)(xi) truncation error coef®cient of GDQ approximation of the Nth

order derivative at xi discrete point
Aij , Bij , Cij , Dij GDQ weighting coef®cients of the 1st, 2nd, 3rd and 4th order

derivatives
W modal de¯ection
o natural frequency of free vibration



DQ VIBRATION ANALYSIS 257

l length of the beam
r density of the beam
I constant area moment of inertia about the neutral axis
E elastic modulus
DL index number of left replacement point of analog governing

equations
DR index number of right replacement point of analog governing

equations
l aspect ratio of the plate
� Poisson ratio
D plate stiffness
h total plate thickness
a, b stretching parameters of grid spacing along x and y directions
ek relative deviation of frequency for the kth mode
e average relative error or deviation
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